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k De Smet and Rui Lu��s V. P. M. PiresDep. for Tele
ommuni
ations and Information Pro
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ABSTRACTIn this paper we dis
uss a new implementation of a 
oating point based rainfalling watershed algorithm. First,we analyse and 
ompare our proposed algorithm and its implementation with two implementations based on thewell-known dis
rete Vin
ent-Soille 
ooding watershed algorithms. Next, we show that by 
arefully designing andoptimizing our algorithm a memory (bandwidth) eÆ
ient and high speed implementation 
an be realised. We reporton timing and memory usage results for di�erent 
ompiler settings, 
omputer systems and algorithmi
 parameters.Our optimized implementation turns out to be signi�
antly faster than the two Vin
ent-Soille based implementationswith whi
h we 
ompare. Finally, we in
lude some segmentation results to illustrate that visually a

eptable andalmost identi
al segmentation results 
an always be obtained for all algorithms being 
ompared. And, we alsoexplain how, in 
ombination with other pre- or post-pro
essing te
hniques, the problem of oversegmentation (a typi
alproblem of all raw watershed algorithms) 
an be (partially) over
ome. All these properties make that our proposedimplementation is an ex
ellent 
andidate for use in various pra
ti
al appli
ations where high speed performan
eand/or eÆ
ient memory usage is needed.Keywords: watershed, segmentation, optimized implementation, high-speed, memory eÆ
ient1. INTRODUCTIONIn image pro
essing and analysis, image segmentation is still one of the 
ru
ial issues. The watershed transformationhas proven to be a powerful basi
 segmentation tool that 
an be attributed properties of both edge dete
tion andregion growing te
hniques. Originally, watershed algorithms found their appli
ation in the �eld of topography (seeRef. 1), but sin
e then they have been studied for several other important image segmentation tasks and appli
ationsranging from image 
oding to obje
t re
ognition and tra
king. In this paper we will summarize and 
ompare speed,memory and segmentation behaviour and results for two di�erent (types of) watershed algorithms.2. THEORY2.1. Vin
ent and Soille Based AlgorithmsIn Ref. 1 and Ref. 2 fast and 
exible algorithms for 
omputing watersheds for digital greys
ale images are dis
ussed.These well-known algorithms are based on an immersion pro
ess analogy, in whi
h the 
ooding of water on an\a
tivity" image, 
onsidered to be a dis
rete topographi
 relief, is eÆ
iently simulated using a queue of pixels. Thisa
tivity image is supposed to take high values in the neighbourhood of edges and low values for interior pixels. So,this a
tivity image serves as a fuzzy edge indi
ator. The a
tual a
tivities 
an be 
al
ulated using e.g. the squaredamplitude of the gradient, or the Teager energy (see Ref. 3). The number of dis
rete levels retained in the quantizeda
tivity image should be kept small so the algorithm 
an be 
al
ulated easily, i.e. fast, but should not be 
hosen toosmall in order to obtain a

eptable segmentation results. To obtain the desired segmentation, the 
at
hment basinsfor the water have to be delineated on the topographi
 surfa
e.Further author information: (Send 
orresponden
e to P.D.S.)P.D.S.: E-mail: pds�telin.rug.a
.be,R.P.: E-mail: rp�telin.rug.a
.be;Tel.: +32 9 2643416, Fax: +32 9 2644295WWW-site: http://telin.rug.a
.be/ipi/watershed/
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(a) (b) (
)
Figure 1. Flooding based watersheds; as time progresses more dams are 
onstru
ted until �nally all four segmentshave been delineated.Figure 1 illustrates how the 
ooding pro
ess pro
eeds as time progresses; where the water 
oming from di�erent
at
hment basins would meet, a \dam" is 
onstru
ted on the topographi
 rims. These dams will delineate thesegment borders and are 
alled the watersheds or watershed lines.Basi
ally, the algorithm 
onsists of two steps; a sorting step and a 
ooding step. The sorting step �rst 
omputesthe frequen
y distribution of ea
h grey level in the a
tivity image. The 
umulative frequen
y is then 
omputed,so ea
h pixel(pointer) 
an be assigned to a unique 
ell in a sorted array; see Ref. 1 and Ref. 2. By doing this,pixels of equal a
tivity \altitude" 
an then be examined sequentially. In the 
ooding step the (initial) 
at
hmentbasins are re
ursively grown by using a FIFO-queue. The queue based 
ooding is indeed quite fast, but remains
omputationally 
omplex; e.g. a se
ond s
anning of the pixels with a 
ertain grey value, i.e. a topograhi
 level, isne
essary to dete
t if any new 
at
hment basins 
an be dis
overed.In this paper we use two adapted implementations of the algorithm from Ref. 2 available for the Khoros imagepro
essing environment; see Ref. 4. The �rst implementation is (almost) identi
al to the one from Ref. 4, and usesdynami
 memory allo
ations for managing the (data in the) FIFO-queue, i.e. the queue shrinks and grows if moreelements are resp. deleted or added. The se
ond implementation uses a large enough stati
ally allo
ated array forstoring the queue data. By large enough we mean that the maximum queue size needed will be determined andstati
ally allo
ated ea
h time before the real watershed routine is run.An important remark is also that both these implementations do not 
al
ulate any geodesi
 distan
es whi
h wouldimprove their mathemati
al a

ura
y; see Ref. 1.2.2. A General Rainfalling AlgorithmThe rainfalling algorithm in our proposed implementation uses similar 
on
epts as the dis
rete algorithm, but alsohas some signi�
ant di�eren
es. Most importantly, we use the 
on
ept of a 
oating point a
tivity image as the inputof the watershed algorithm.The desired segmentation 
an again be obtained using two steps. First, some of the weakest edges (e.g. due tonoise) 
an be removed by \drowning" the image. This drowning step will 
reate a number of \lakes" grouping all thepixels that lie below a 
ertain threshold. The threshold 
an also be interpreted as an \(under)ground water level".This is useful to redu
e the in
uen
e of noise, and redu
es the oversegmentation; see also se
tion 3.1. Se
ond, forea
h pixel we determine in whi
h dire
tion a raindrop would 
ow if it would fall on the topographi
 a
tivity surfa
e.This steepest des
ent neighbour and the pixel under 
onsideration are then merged, �nally enabling the lo
alizationof the remaining edges and segments, i.e. the areas (\slopes" and \lakes") surrounded by the topographi
 surfa
erims.Figure 2 illustrates how the rainfalling (on the rims that have not been drowned) segments an image.
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(a) (b) (
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Figure 2. Rainfalling based watersheds; (a) illustrates the drowning threshold (DT); (b) resp. (
) illustrate thesteepest des
ent rainfalling prin
iple and the segmentation results for di�erent 
hoi
es of the drowning threshold.

(a) (b) (
)
Figure 3. Segmentation results for the image TREES (a) original image; (b) rainfalling segmentation results forDT=1/255, 4106 segments; (
) rainfalling segmentation results for DT=0.015, 1696 segments. Similar results 
an beobtained with the 
ooding based approa
h (if an appropriate quantization of the a
tivity image is performed �rst).

In this paper we do not formulate all the algorithmi
 details and optimizations, nor the full des
ription of allthe datastru
tures whi
h we used to obtain our optimized implementation; these issues are dis
ussed in Ref. 5 (�rstimplementation without memory optimizations) and in Ref. 6 (revised implementation examined in this paper).Another issue when dis
ussing both the dis
rete and the 
oating point based implementations, is the treatmentof the so-
alled \plateau" pixels; this is also dis
ussed in Ref. 6.3. PROPERTIES AND RESULTS3.1. Segmentation Properties and ResultsA typi
al problem of the watershed algorithms as dis
ussed above, is the resulting oversegmentation of the image.As is illustrated in �gure 3, this is espe
ially the 
ase for images with a lot of texture.However, for a range of di�erent parameter settings, both (types of) algorithms demonstrate very similar be-haviour. Also, in this paper our aim is not to obtain the best segmentation results possible, but rather to illustratethe performan
e of the basi
 algorithms using a
tivity input images whi
h result in visually a

eptable segmentationresults. Hen
e, to solve the oversegmentation problem for the dis
rete Vin
ent-Soille based (DVSB) implementations
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Figure 4. The image PEPPERS and the segmentation results (256 � 256; parameters see text) obtained using ourproposed OFPBR implementation (583 remaining segments). The results obtained with the DVSB implementations(518 remaining segments) are visually identi
al.
we introdu
e the following simple pre-pro
essing pro
edure. First, the squared amplitude of the gradient of thenormalized image (
oating point range 0 to 1; by s
aling with 1/255) is 
al
ulated. This gradient based a
tivityimage is then 
lipped with a 
lipping threshold CT, i.e. all pixels with a value bigger than CT are set to the valueCT, and the remaining range is uniformly quantized into 256 levels. The segmentation results for both the dynam-i
ally (DVSB1) and the stati
ally (DVSB2) allo
ated FIFO-queue implementations are obviously identi
al. Theirdi�eren
es in terms of memory and 
omputational eÆ
ien
y are dis
ussed below.For the optimized 
oating point based rainfalling implementation (OFPBR), we have already dis
ussed the useof a drowning threshold DT. The input image is always the non-
lipped 
oating point a
tivity image. In Ref. 7,8 and 9 we dis
ussed and illustrated an additional pre-pro
essing strategy for redu
ing the oversegmentation andextending the OFPBR segmentation s
heme to 
olour images. The use of 
oating point information is quite importantin this improvement method, and it also avoids the problem of having to quantize the a
tivity image whi
h wouldobviously lead to a loss of information and a

ura
y. Quantization of the a
tivity image would also require additional
omputation time.Figure 4 illustrates the raw watershed segmentation results for the image PEPPERS. The OFPBR-routine resultswere obtained by setting DT=1/255. No 
lipping was used in the DVSB 
ase (CT=maximum squared amplitude ofthe gradient image).Some more segmentation results (e.g. for some of the 512 � 512 images mentioned in tables 1 and 2 below) andthe OFPBR-sour
e 
ode are available on the WWW; see Ref. 10.One of the interesting additional properties of the datastru
tures we used to implement our optimized watershed,is that all the pixels of a segment are available as a singly linked list, and ea
h pixel is assigned a unique label. Hen
e,further post-watershed pro
essing is straightforward and eÆ
ient (e.g. determining the size of ea
h segment).The DVSB implementations only return a segment label image, and do not label ea
h pixel uniquely, i.e. the edgepixels are given the label \WSHED". Hen
e, additional pro
essing would be needed to determine to whi
h segmentthese pixels would belong (see also Ref. 1).Some other problems related to the DVSB algorithms are dis
ussed in Ref. 6 and Ref. 11.3.2. Memory Usage and EÆ
ien
yAs des
ribed in Ref. 1 and Ref. 2 the minimal memory requirements of the dis
rete algorithm are: an image ofpointers (to grey value sorted pixels), the FIFO-queue, and a segment label image (output). The maximum size ofthe FIFO-queue is dependent on the image under 
onsideration. Hen
e, the amount of memory that will be neededfor a 
ertain image needs to be either pre-determined and allo
ated before the a
tual watershed algorithm is initiated,or the maximal amount of memory needs to be 
al
ulated based upon the image dimensions, or the queue has to begiven dynami
 (re-)allo
ation possibilities.
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Table 1. Averaged DVSB-timing results on the Linux-PC-portablePEPPERS NoS timing (s) CTDVSB1 g++ g++ -O3128x128 299 0.15 0.12 none256x256 518 0.61 0.50 none512x512 1401 2.59 2.08 0.20512x512 2070 2.62 2.12 0.15512x512 3430 2.71 2.18 0.10PEPPERS NoS timing (s) CTDVSB2 g++ g++ -O3128x128 299 0.11 0.09 none256x256 518 0.43 0.31 none512x512 1401 1.91 1.32 0.20512x512 2070 1.94 1.33 0.15512x512 3430 1.97 1.35 0.10
The OFPBR implementation only needs a segment label image and an image for storing pointers (linking pixelsinto segments). Our implementation also uses a small amount of additional memory for storing temporary, i.e.
a
hed, data (see Ref. 5 and Ref. 6), but this is never in
uen
ed by the 
ontent of the image being 
onsidered.The a
tual amount of memory 
an obviously also be dependent on the ar
hite
ture of the system on whi
h the
ode is 
ompiled or on a set of implementation related 
hoi
es (e.g. are C 
ode \longs" or \shorts" used for thesegment labeling of the pixels).A disadvantage of the OFPBR algorithm is that it requires a 
oating point a
tivity input image; the DVSBwatershed routines use a 256 byte valued input image. However, if no further, or only limited other pre-pro
essingis required (e.g. �ltering with spatially small kernels), the a
tivity image data 
ould be 
al
ulated on the 
y (this isnot the 
ase in the 
urrent OFPBR implementation). This would be possible sin
e the OFPBR algorithm only runsthrough the image on
e in a single video s
anning order; see Ref. 5 and Ref. 6. This also o�ers impli
it (e.g. 
a
hes) orexpli
it possibilities for (hardware related) memory bandwidth optimizations as e.g. 
a
hing and/or data-pre-fet
hingstrategies, et
. Also, the segment labels 
ould be 
opied into the a
tivity image memory as soon as a 
ertain imageline has been pro
essed.The DVSB algorithms have a spatially more random a

ess like behaviour; they pro
ess pixels of the same greyvalue sequentially. In earlier papers (see Ref. 5 and Ref. 12) we investigated the DVSB implementations with thesour
e 
ode as available on the internet (see Ref. 4). In this paper we report results for optimized and improvedimplementations; �rst, we optimized the histogram based pixel sorting 
ode. This allowed e.g. a redu
tion of thehistogram 
omputation time from approximately 120 ms to 30 ms (for a 512 � 512 image, on the Linux ar
hite
turementioned below). In a se
ond step we removed a serious ineÆ
ien
y from the original implementation whi
hneedlessly added the same pixel several times to the queue. By 
orre
ting this latter ineÆ
ien
y in the 
ode, avery signi�
ant speed-up and redu
tion in the amount of used FIFO-memory 
ould be obtained. E.g. for the imagePEPPERS and with CT set to 0.15, the maximum amount of elements in the queue de
reased from 188181 to 39667.As will be shown below, 
hoosing between the two DVSB implementations based on their memory allo
ation andusage strategies 
an also have a signi�
ant impa
t on the speed of the segmentation pro
ess.For 3D-segmentation appli
ations the DVSB random pixel a

ess behaviour is even more undesirable; see Ref. 13.Hen
e, the progressive single s
an nature of the OFPBR watershed o�ers interesting possibilities for further resear
h.
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Table 2. Averaged OFPBR-timing results on the Linux-PC-portablePEPPERS NoS timing (s) DTOFPBR g++ g++ -O3128x128 335 0.08 0.06 1/255256x256 581 0.30 0.22 1/255512x512 1408 1.22 0.93 0.001512x512 2319 1.25 0.96 0.0007512x512 3885 1.27 0.99 0.0005
Table 3. Averaged DVSB-timing results on the Sun Ultra Spar
 II workstationPEPPERS NoS timing (s) CTDVSB1 g++ g++ -O3512x512 1401 1.000 0.600 0.20512x512 2070 1.020 0.620 0.15512x512 3430 1.040 0.640 0.10PEPPERS NoS timing (s) CTDVSB2 g++ g++ -O3512x512 1401 0.670 0.270 0.20512x512 2070 0.680 0.280 0.15512x512 3430 0.680 0.290 0.10

3.3. Timing ResultsTables 1 and 2 indi
ate the speed (in se
onds) of the di�erent algorithms.These results were obtained when the sour
e 
ode was 
ompiled and run on a Linux-portable running RedHatLinux 6.0, kernel 2.2.5-15 with a 200 Mhz MMX pro
essor, 96 Mbyte RAM, 256 Kbyte 
a
he and the g++/eg
s-2.91.66
ompiler.Tables 3 and 4 summarize similar results, but after 
ompilation on a Sun Ultra 2 UPA/SBus (2 � (UltraSPARC-II296MHz, 2Mb 
a
he), 256 Mb RAM) workstation with SunOS version 5.7 and g++ version 2.8.1.All the tables also report on the timing results for ea
h implementation with both standard (g++) and optimized(g++ -O3) 
ompilation for various images sizes.To make a meaningful 
omparison of the timing results of the algorithms, we need to 
ompare segmentationresults whi
h are both visually a

eptable and similar. By experimenting with di�erent thresholds CT and DT,ranges of visually a

eptable results 
an be determined. Visual similarity of the segmentation results (for DVSBvs. OFPBR 
omparison) 
orresponds to setting the parameters su
h that the number of retained segments (NoS) isroughly the same.Also note that the DVSB results reported in tables 1 and 3 do not in
lude the pro
essing time needed to quantizeand 
lip the input a
tivity image, nor the time needed to relabel the \WSHED" pixels (see se
tion 3.1). A separateand fairly optimized 
lipping and quantization routine typi
ally takes 150 ms (-O3 
ompilation) to 270 ms for a 512� 512 image on the Linux-system mentioned earlier.What 
an be seen in the tables is that, as 
ould be expe
ted, the stati
ally allo
ated dis
rete algorithm (DVSB2)is signi�
antly faster than the dynami
 one (DVSB1). Additionally, tables 1 and 3 illustrate that the 
hoi
e of goodoptimizing 
ompiler(setting)s is quite important for the DVSB 
ooding algorithms.The OFPBR implementation turns out to be \optimized by design" (little 
ompiler dependen
y/in
uen
e), andis signi�
antly faster than the DVSB implementations. Possibly the DVSB implementations 
ould be optimized
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Table 4. Averaged OFPBR-timing results on the Sun Ultra Spar
 II workstationPEPPERS NoS timing (s) DTOFPBR g++ g++ -O3512x512 1408 0.30 0.18 0.0010512x512 2319 0.31 0.19 0.0007512x512 3885 0.32 0.20 0.0005
further, but for region growing algorithms, this task is far from trivial 
ompared to the straightforward OFPBRoptimizations (see Ref. 5 and Ref. 6).In Ref. 1, 14 and 15 it was demonstrated that Vin
ent-Soille based algorithms are still (among) the fastestalgorithms 
urrently available. Hen
e, the speed-up we have obtained here 
an be 
onsidered to be quite signi�
ant.4. CONCLUSIONIn this paper we have shown that the very intuitive rainfalling watershed prin
iple 
an be implemented very ef-�
iently. Our proposed OFPBR implementation also o�ers other (post-watershed pro
essing related) advantagesand does not require an intermediate input image quantization step whi
h 
an result in loss of information anda

ura
y. In 
ombination with other pre- or post-pro
essing te
hniques the problem of oversegmentation |a typi
alproblem of all raw watershed algorithms| 
an be (partially) over
ome. This makes our proposed implementationan ex
ellent 
andidate for use in pra
ti
al appli
ations where high speed performan
e and/or eÆ
ient memory usageis needed. Further optimization of the 
urrent OFPBR implementation and extensions for 3D-appli
ations are beinginvestigated, and parallellization and further 
omparison with other algorithms are being 
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