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Implementation and analysis of an optimized rainfallingwatershed algorithmPatrik De Smet and Rui Lu��s V. P. M. PiresDep. for Teleommuniations and Information ProessingUniversity of Ghent (TELIN-TW07V)Sint{Pietersnieuwstraat 41, B{9000 Gent, Belgium
ABSTRACTIn this paper we disuss a new implementation of a oating point based rainfalling watershed algorithm. First,we analyse and ompare our proposed algorithm and its implementation with two implementations based on thewell-known disrete Vinent-Soille ooding watershed algorithms. Next, we show that by arefully designing andoptimizing our algorithm a memory (bandwidth) eÆient and high speed implementation an be realised. We reporton timing and memory usage results for di�erent ompiler settings, omputer systems and algorithmi parameters.Our optimized implementation turns out to be signi�antly faster than the two Vinent-Soille based implementationswith whih we ompare. Finally, we inlude some segmentation results to illustrate that visually aeptable andalmost idential segmentation results an always be obtained for all algorithms being ompared. And, we alsoexplain how, in ombination with other pre- or post-proessing tehniques, the problem of oversegmentation (a typialproblem of all raw watershed algorithms) an be (partially) overome. All these properties make that our proposedimplementation is an exellent andidate for use in various pratial appliations where high speed performaneand/or eÆient memory usage is needed.Keywords: watershed, segmentation, optimized implementation, high-speed, memory eÆient1. INTRODUCTIONIn image proessing and analysis, image segmentation is still one of the ruial issues. The watershed transformationhas proven to be a powerful basi segmentation tool that an be attributed properties of both edge detetion andregion growing tehniques. Originally, watershed algorithms found their appliation in the �eld of topography (seeRef. 1), but sine then they have been studied for several other important image segmentation tasks and appliationsranging from image oding to objet reognition and traking. In this paper we will summarize and ompare speed,memory and segmentation behaviour and results for two di�erent (types of) watershed algorithms.2. THEORY2.1. Vinent and Soille Based AlgorithmsIn Ref. 1 and Ref. 2 fast and exible algorithms for omputing watersheds for digital greysale images are disussed.These well-known algorithms are based on an immersion proess analogy, in whih the ooding of water on an\ativity" image, onsidered to be a disrete topographi relief, is eÆiently simulated using a queue of pixels. Thisativity image is supposed to take high values in the neighbourhood of edges and low values for interior pixels. So,this ativity image serves as a fuzzy edge indiator. The atual ativities an be alulated using e.g. the squaredamplitude of the gradient, or the Teager energy (see Ref. 3). The number of disrete levels retained in the quantizedativity image should be kept small so the algorithm an be alulated easily, i.e. fast, but should not be hosen toosmall in order to obtain aeptable segmentation results. To obtain the desired segmentation, the athment basinsfor the water have to be delineated on the topographi surfae.Further author information: (Send orrespondene to P.D.S.)P.D.S.: E-mail: pds�telin.rug.a.be,R.P.: E-mail: rp�telin.rug.a.be;Tel.: +32 9 2643416, Fax: +32 9 2644295WWW-site: http://telin.rug.a.be/ipi/watershed/
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(a) (b) ()
Figure 1. Flooding based watersheds; as time progresses more dams are onstruted until �nally all four segmentshave been delineated.Figure 1 illustrates how the ooding proess proeeds as time progresses; where the water oming from di�erentathment basins would meet, a \dam" is onstruted on the topographi rims. These dams will delineate thesegment borders and are alled the watersheds or watershed lines.Basially, the algorithm onsists of two steps; a sorting step and a ooding step. The sorting step �rst omputesthe frequeny distribution of eah grey level in the ativity image. The umulative frequeny is then omputed,so eah pixel(pointer) an be assigned to a unique ell in a sorted array; see Ref. 1 and Ref. 2. By doing this,pixels of equal ativity \altitude" an then be examined sequentially. In the ooding step the (initial) athmentbasins are reursively grown by using a FIFO-queue. The queue based ooding is indeed quite fast, but remainsomputationally omplex; e.g. a seond sanning of the pixels with a ertain grey value, i.e. a topograhi level, isneessary to detet if any new athment basins an be disovered.In this paper we use two adapted implementations of the algorithm from Ref. 2 available for the Khoros imageproessing environment; see Ref. 4. The �rst implementation is (almost) idential to the one from Ref. 4, and usesdynami memory alloations for managing the (data in the) FIFO-queue, i.e. the queue shrinks and grows if moreelements are resp. deleted or added. The seond implementation uses a large enough statially alloated array forstoring the queue data. By large enough we mean that the maximum queue size needed will be determined andstatially alloated eah time before the real watershed routine is run.An important remark is also that both these implementations do not alulate any geodesi distanes whih wouldimprove their mathematial auray; see Ref. 1.2.2. A General Rainfalling AlgorithmThe rainfalling algorithm in our proposed implementation uses similar onepts as the disrete algorithm, but alsohas some signi�ant di�erenes. Most importantly, we use the onept of a oating point ativity image as the inputof the watershed algorithm.The desired segmentation an again be obtained using two steps. First, some of the weakest edges (e.g. due tonoise) an be removed by \drowning" the image. This drowning step will reate a number of \lakes" grouping all thepixels that lie below a ertain threshold. The threshold an also be interpreted as an \(under)ground water level".This is useful to redue the inuene of noise, and redues the oversegmentation; see also setion 3.1. Seond, foreah pixel we determine in whih diretion a raindrop would ow if it would fall on the topographi ativity surfae.This steepest desent neighbour and the pixel under onsideration are then merged, �nally enabling the loalizationof the remaining edges and segments, i.e. the areas (\slopes" and \lakes") surrounded by the topographi surfaerims.Figure 2 illustrates how the rainfalling (on the rims that have not been drowned) segments an image.
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(a) (b) ()
Figure 2. Rainfalling based watersheds; (a) illustrates the drowning threshold (DT); (b) resp. () illustrate thesteepest desent rainfalling priniple and the segmentation results for di�erent hoies of the drowning threshold.

(a) (b) ()
Figure 3. Segmentation results for the image TREES (a) original image; (b) rainfalling segmentation results forDT=1/255, 4106 segments; () rainfalling segmentation results for DT=0.015, 1696 segments. Similar results an beobtained with the ooding based approah (if an appropriate quantization of the ativity image is performed �rst).

In this paper we do not formulate all the algorithmi details and optimizations, nor the full desription of allthe datastrutures whih we used to obtain our optimized implementation; these issues are disussed in Ref. 5 (�rstimplementation without memory optimizations) and in Ref. 6 (revised implementation examined in this paper).Another issue when disussing both the disrete and the oating point based implementations, is the treatmentof the so-alled \plateau" pixels; this is also disussed in Ref. 6.3. PROPERTIES AND RESULTS3.1. Segmentation Properties and ResultsA typial problem of the watershed algorithms as disussed above, is the resulting oversegmentation of the image.As is illustrated in �gure 3, this is espeially the ase for images with a lot of texture.However, for a range of di�erent parameter settings, both (types of) algorithms demonstrate very similar be-haviour. Also, in this paper our aim is not to obtain the best segmentation results possible, but rather to illustratethe performane of the basi algorithms using ativity input images whih result in visually aeptable segmentationresults. Hene, to solve the oversegmentation problem for the disrete Vinent-Soille based (DVSB) implementations
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Figure 4. The image PEPPERS and the segmentation results (256 � 256; parameters see text) obtained using ourproposed OFPBR implementation (583 remaining segments). The results obtained with the DVSB implementations(518 remaining segments) are visually idential.
we introdue the following simple pre-proessing proedure. First, the squared amplitude of the gradient of thenormalized image (oating point range 0 to 1; by saling with 1/255) is alulated. This gradient based ativityimage is then lipped with a lipping threshold CT, i.e. all pixels with a value bigger than CT are set to the valueCT, and the remaining range is uniformly quantized into 256 levels. The segmentation results for both the dynam-ially (DVSB1) and the statially (DVSB2) alloated FIFO-queue implementations are obviously idential. Theirdi�erenes in terms of memory and omputational eÆieny are disussed below.For the optimized oating point based rainfalling implementation (OFPBR), we have already disussed the useof a drowning threshold DT. The input image is always the non-lipped oating point ativity image. In Ref. 7,8 and 9 we disussed and illustrated an additional pre-proessing strategy for reduing the oversegmentation andextending the OFPBR segmentation sheme to olour images. The use of oating point information is quite importantin this improvement method, and it also avoids the problem of having to quantize the ativity image whih wouldobviously lead to a loss of information and auray. Quantization of the ativity image would also require additionalomputation time.Figure 4 illustrates the raw watershed segmentation results for the image PEPPERS. The OFPBR-routine resultswere obtained by setting DT=1/255. No lipping was used in the DVSB ase (CT=maximum squared amplitude ofthe gradient image).Some more segmentation results (e.g. for some of the 512 � 512 images mentioned in tables 1 and 2 below) andthe OFPBR-soure ode are available on the WWW; see Ref. 10.One of the interesting additional properties of the datastrutures we used to implement our optimized watershed,is that all the pixels of a segment are available as a singly linked list, and eah pixel is assigned a unique label. Hene,further post-watershed proessing is straightforward and eÆient (e.g. determining the size of eah segment).The DVSB implementations only return a segment label image, and do not label eah pixel uniquely, i.e. the edgepixels are given the label \WSHED". Hene, additional proessing would be needed to determine to whih segmentthese pixels would belong (see also Ref. 1).Some other problems related to the DVSB algorithms are disussed in Ref. 6 and Ref. 11.3.2. Memory Usage and EÆienyAs desribed in Ref. 1 and Ref. 2 the minimal memory requirements of the disrete algorithm are: an image ofpointers (to grey value sorted pixels), the FIFO-queue, and a segment label image (output). The maximum size ofthe FIFO-queue is dependent on the image under onsideration. Hene, the amount of memory that will be neededfor a ertain image needs to be either pre-determined and alloated before the atual watershed algorithm is initiated,or the maximal amount of memory needs to be alulated based upon the image dimensions, or the queue has to begiven dynami (re-)alloation possibilities.
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Table 1. Averaged DVSB-timing results on the Linux-PC-portablePEPPERS NoS timing (s) CTDVSB1 g++ g++ -O3128x128 299 0.15 0.12 none256x256 518 0.61 0.50 none512x512 1401 2.59 2.08 0.20512x512 2070 2.62 2.12 0.15512x512 3430 2.71 2.18 0.10PEPPERS NoS timing (s) CTDVSB2 g++ g++ -O3128x128 299 0.11 0.09 none256x256 518 0.43 0.31 none512x512 1401 1.91 1.32 0.20512x512 2070 1.94 1.33 0.15512x512 3430 1.97 1.35 0.10
The OFPBR implementation only needs a segment label image and an image for storing pointers (linking pixelsinto segments). Our implementation also uses a small amount of additional memory for storing temporary, i.e.ahed, data (see Ref. 5 and Ref. 6), but this is never inuened by the ontent of the image being onsidered.The atual amount of memory an obviously also be dependent on the arhiteture of the system on whih theode is ompiled or on a set of implementation related hoies (e.g. are C ode \longs" or \shorts" used for thesegment labeling of the pixels).A disadvantage of the OFPBR algorithm is that it requires a oating point ativity input image; the DVSBwatershed routines use a 256 byte valued input image. However, if no further, or only limited other pre-proessingis required (e.g. �ltering with spatially small kernels), the ativity image data ould be alulated on the y (this isnot the ase in the urrent OFPBR implementation). This would be possible sine the OFPBR algorithm only runsthrough the image one in a single video sanning order; see Ref. 5 and Ref. 6. This also o�ers impliit (e.g. ahes) orexpliit possibilities for (hardware related) memory bandwidth optimizations as e.g. ahing and/or data-pre-fethingstrategies, et. Also, the segment labels ould be opied into the ativity image memory as soon as a ertain imageline has been proessed.The DVSB algorithms have a spatially more random aess like behaviour; they proess pixels of the same greyvalue sequentially. In earlier papers (see Ref. 5 and Ref. 12) we investigated the DVSB implementations with thesoure ode as available on the internet (see Ref. 4). In this paper we report results for optimized and improvedimplementations; �rst, we optimized the histogram based pixel sorting ode. This allowed e.g. a redution of thehistogram omputation time from approximately 120 ms to 30 ms (for a 512 � 512 image, on the Linux arhiteturementioned below). In a seond step we removed a serious ineÆieny from the original implementation whihneedlessly added the same pixel several times to the queue. By orreting this latter ineÆieny in the ode, avery signi�ant speed-up and redution in the amount of used FIFO-memory ould be obtained. E.g. for the imagePEPPERS and with CT set to 0.15, the maximum amount of elements in the queue dereased from 188181 to 39667.As will be shown below, hoosing between the two DVSB implementations based on their memory alloation andusage strategies an also have a signi�ant impat on the speed of the segmentation proess.For 3D-segmentation appliations the DVSB random pixel aess behaviour is even more undesirable; see Ref. 13.Hene, the progressive single san nature of the OFPBR watershed o�ers interesting possibilities for further researh.
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Table 2. Averaged OFPBR-timing results on the Linux-PC-portablePEPPERS NoS timing (s) DTOFPBR g++ g++ -O3128x128 335 0.08 0.06 1/255256x256 581 0.30 0.22 1/255512x512 1408 1.22 0.93 0.001512x512 2319 1.25 0.96 0.0007512x512 3885 1.27 0.99 0.0005
Table 3. Averaged DVSB-timing results on the Sun Ultra Spar II workstationPEPPERS NoS timing (s) CTDVSB1 g++ g++ -O3512x512 1401 1.000 0.600 0.20512x512 2070 1.020 0.620 0.15512x512 3430 1.040 0.640 0.10PEPPERS NoS timing (s) CTDVSB2 g++ g++ -O3512x512 1401 0.670 0.270 0.20512x512 2070 0.680 0.280 0.15512x512 3430 0.680 0.290 0.10

3.3. Timing ResultsTables 1 and 2 indiate the speed (in seonds) of the di�erent algorithms.These results were obtained when the soure ode was ompiled and run on a Linux-portable running RedHatLinux 6.0, kernel 2.2.5-15 with a 200 Mhz MMX proessor, 96 Mbyte RAM, 256 Kbyte ahe and the g++/egs-2.91.66ompiler.Tables 3 and 4 summarize similar results, but after ompilation on a Sun Ultra 2 UPA/SBus (2 � (UltraSPARC-II296MHz, 2Mb ahe), 256 Mb RAM) workstation with SunOS version 5.7 and g++ version 2.8.1.All the tables also report on the timing results for eah implementation with both standard (g++) and optimized(g++ -O3) ompilation for various images sizes.To make a meaningful omparison of the timing results of the algorithms, we need to ompare segmentationresults whih are both visually aeptable and similar. By experimenting with di�erent thresholds CT and DT,ranges of visually aeptable results an be determined. Visual similarity of the segmentation results (for DVSBvs. OFPBR omparison) orresponds to setting the parameters suh that the number of retained segments (NoS) isroughly the same.Also note that the DVSB results reported in tables 1 and 3 do not inlude the proessing time needed to quantizeand lip the input ativity image, nor the time needed to relabel the \WSHED" pixels (see setion 3.1). A separateand fairly optimized lipping and quantization routine typially takes 150 ms (-O3 ompilation) to 270 ms for a 512� 512 image on the Linux-system mentioned earlier.What an be seen in the tables is that, as ould be expeted, the statially alloated disrete algorithm (DVSB2)is signi�antly faster than the dynami one (DVSB1). Additionally, tables 1 and 3 illustrate that the hoie of goodoptimizing ompiler(setting)s is quite important for the DVSB ooding algorithms.The OFPBR implementation turns out to be \optimized by design" (little ompiler dependeny/inuene), andis signi�antly faster than the DVSB implementations. Possibly the DVSB implementations ould be optimized
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Table 4. Averaged OFPBR-timing results on the Sun Ultra Spar II workstationPEPPERS NoS timing (s) DTOFPBR g++ g++ -O3512x512 1408 0.30 0.18 0.0010512x512 2319 0.31 0.19 0.0007512x512 3885 0.32 0.20 0.0005
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